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A Lyapunov transformation for systems of linear ordinary differential equations which depend 

periodically on time is constructed. The transformation reduces any such system to a system with 

constant coefficients. The construction is based on a procedure of successive replacement of variables. 

Convergence conditions are established, and if convergence occurs, its rate is estimated. The estimates 

are used to determine whether the zero equilibrium is Lyapunov stable. 

Lyapunov proposed the problem of whether a system of linear ordinary differential equations with 

continuous T-periodic coefficients is reducible to a system with constant coefficients. He proved that any 
such system is reducible [l]. With regard to a system X=aA(l)x, a reducing transformation was 

constructed as a formal series in powers of E [2]; it was proved that this series converges if 

sTmax,sup,+,,, I h,(t)Icln2, where hi(t) are the eigenvalues of the matrix A(t) [2]. Since then [3-51, 

different aspects of the formal-series construction of reducing replacements have been considered. 

A procedure of successive substitutions of variables has been used to find Lyapunov reducing 
transformations [6]. With regard to a system of the form X = (A +B(r)) x, where A is a constant matrix and 
B(r) is a quasi-periodic matrix, it has been proved that convergence occurs if all the eigenvalues of A are 

real and strongly distinct, and the norm of B(t) is sufficiently small and satisfies an infinite chain of in- 

equalities. For purely periodic systems, however, simpler and more intuitive estimates will ensure that the 
procedure of successive replacements is convergent. 

1. Consider the system 

i = A&)x (l-1) 

(x =(x1 ,..., %“), Ao=&+&,, &)=+(t)dr, &=A()-&) 

where h(t) is a continuous T-periodic (n xn) matrix. Denote the space of continuous T- 
periodic (n xn) matrices by C. Define a norm in that space by 

where qj are the elements of A. With this norm the space C is complete [7]. The subscript C in 
the norm symbol will henceforth be omitted. 

We apply a procedure of successive replacements to (l.l), where the kth replacement is 
defined by 
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xck_,) =(E+Z,)x(,,, k=LL..., x(o) =x 11.21 

where xc,_,), xCk, are the old and new variables, respectively, E is the identity matrix and Z,(t) a 
T-periodic continuously differentiable solution of the matrix differential equation 

satisfying the condition zk = 0. Such a solution is defined if the eigenvalues of the matrix xk..j 
satisfy the relations 

hi -hi # 2~T-‘fi~rr, i, j = l,..., n 

for any non-zero integer m [4,5]. 
A sufficient condition for the k th replacement (1.2) to be non-degenerate 

]]‘k]] < ’ 

(1.4j 

is [S] 

(1.5) 

After k steps, the transformed system has the form 

&, = Ak+j, A, = &_, +(E+Z,)-’ ji,_,Z, (1.6) 

If the first m successive replacements are defined and non-degenerate, then the matrices A, 
are obviously continuous and T-periodic for k =s m, i.e. systems (1.6) are of the same class as 
(1.1). We will establish conditions for the existence of non-degenerate replacements at each 
step and conditions for the convergence of the procedure. The intermediate results may be 
formulated as several lemmas. 

Lemma 1. Let A, B E C. Then 

(1.7) 

If also dB/dt E C. then 

IB-BllG )/2TpB/dtlI (1.8) 

Inequalities (1.7) follow from the properties of matrix norms [8]. An estimate analogous to 
(1.8) was proved in [9]. 

To abbreviate the subsequent operations, we introduce the notation 

?)t,/2 6 

Ok =mv 
2ok 

‘=I-ok-&$’ 
k=O,l,... 0.9) 

Lemma 2. If 

zv,cl, oa<(fi -3)14 (1.10) 

then the replacement of variables (1.2) is defined and non-degenerate at the first step, and 

nIL, <I, ll,<l@o, o,<aese. 6,&V O<%)<l (1.11) 

Proof. By the properties of matrix norms [8], if hj are the eigenvalues of the matrix A,,, then 
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max,,, ,,,,,” I h, IcII~~ II, and by the fit of conditions (l.lO), I h, IcUT, (j=l, . . . , n). Hence we conclude 

that inequalities (1.4) hold, the required solution Z, of Eq. (1.3) may be found, the substitution (1.2) is 

defined. Further, using inequality (1.8), we find that the solution Z, of Eq. (1.3) satisfies the estimate 

II Z, Ik T II 2, II /2 s T(2v, II Z, II +p,)/2, or 

11~11~ q (1.12) 

Hence, using the second of conditions (l.lO), we conclude that IIZ,lkl,and so, by (l.S), the 

replacement is indeed non-degenerate at the first step. 
The second inequality in (1.10) is a necessary and sufficient condition for the truth of 0 < 6, < 1. 
Now, using the explicit form of the matrix A, (1.6) and estimates (1.7), we obtain 

v,asvo+p@~/(1-uo). ~1~2W0~(1-~0)* ~l~~oao (1.13) 

from which (1.11) follows by a direct argument, using definitions (1.9) and the condition l-o, -24 >O. 

Lemma 3. Under the assumptions of Lemma 2, the successive replacements of variables (1.2) 
are defined and non-degenerate at each step, i.e. one can construct them indefinitely and for all 
k=l,2,... 

(1.14) 

The proof is by induction, using Lemma 2 and inequality (1.12). 

Lemma 4. Assume that the successive T-periodic replacements (1.2) (the actual form of the 
matrix 2, here is immaterial) are defined, non-degenerate and continuously differentiable for 
each k=l,2,..., and that there constants M,, M, >O exist such that 

(1.15) 

Then the procedure of successive replacements of variables is convergent, i.e. a matrix 
Q_ E C exists such that 

In addition, the substitution 

a. =ktT Q,. Q, =(~+~).-.(~+Zk) 00 (1.16) 

x = Q_,y transforms system (1.1) to a system j = A-y, where 

& =k~rn_A,+. ‘& =R;‘(A&t -f&> (1.17) 

A, being the matrix defining the transrormed system after k iterations. 

Proof. The chain of inequalities 

implies that for arbitrary m and k 

Hence, by the convergence of the first series in (1.15), we deduce that the matrices Q form a fundamental 
sequence which, as C is a complete space, converges to some matrix Q EC. The proof that the sequence 
Qk is convergent is similar. Further, since the elements of the matrices Q,, Qk are uniformly convergent, 

we can differentiate term by term, concluding that Q_ is a continuously differentiable matrix and 

Q_ = fim,+ _a. Thus, the limit transformation is defined. That it is non-degenerate follows from the fact 
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that the replacements of variables at all steps are non-degenerate and that the first series (1.15) 1.5 
convergent, hence II 2, II+ 0, det(E + Z,) -3 1 as k -+ +=. 

Thus, the matrix Q_ defines a certain non-degenerate replacement of variables and. using the formula 

for A, in (1.17), we conclude that A, + A_ = Q:‘(A,Q,. -(I). k + +-. 

We now observe that, under the assumptions of Lemma 3, the assumptions of Lemma 4 will 
also hold for the successive replacements defined by (1.2) and (1.3). since by (1.14) 

(the derivation of the second chain of inequalities uses Eq. (1.3) for the matrix Zk and 

definitions (1.9)). Consequently, under the assumptions of Lemma 3 the procedure is indeed 
convergent. It now follows from the estimates (1.14) that II A_ - x_ II = lim, ,,iy II A, - xk II = 0, i.e. 
the limit matrix A_ is constant. Thus, the limit transformation is a Lyapunov reducing 
transformation. 

The final result may be stated as a theorem. 

Theorem 1. Suppose that the T-periodic matrix 4 defining system (1.1) satisfies the 
conditions 

(1.18) 

Then 
1. The successive replacements of variables (1.2) and (1.3) are defined, non-degenerate and 

T-periodic at each step k = 1,2, . . . . 
2. The procedure of successive replacements is convergent and the limiting transformation 

x = Q_,y (where Q_ is the matrix defined by (1.16)) . IS a Lyapunov reducing transformation. i.e 
A_ = Q:‘(A,,Q_ -Q_) is a constant matrix. 

The above procedure enables one constructively to approximate a Lyapunov reducing 
transformation. Using the estimates (1.14) of Lemma 3, there is no difficulty in estimating t&e 
rate of convergence of the successive transformations and of the sequences of matrices A,. A, 

IlQ_ -Q,lls (1+0,)‘%,,6~-‘D 

( D(x)= g X2m-* 
m=O 1 

2. The conditions stated in Theorem 1 for the convergence of the successive replacements 
may frequently be improved. In particular, this may be done by narrowing down the permis- 
sible class of matrices, slightly modifying the norm. 

Let A4 denote the space of T-periodic matrices whose elements may be expressed as 
absolutely convergent Fourier series. Define a norm in M by 

where a,7 are the Fourier coefficients of the expansion in series of the element a, of the matrix 



The problem of constructing Lyapunov’s reducing transformation 433 

A. Clearly, M c C and II A I(,, 3 II A IIc for any matrix A EM, that is, the norm II. Ily is as a rule 
“worse” than II. II= . However, this makes it possible to improve the conditions for the 
substitutions (1.18) to converge, which then have the simple form 

(2.1) 

In all other respects the formulation of Theorem 1 remains the same. 
The proof proceeds in exactly the same way as for the space C, relying on a few 

modifications in the estimates of Lemmas 1 and 2 (we omit the subscript M in the norm 
symbol) 

(1.7): @tl= Ixll+llill 

(2.2) 

(the number of the old formula is specified on the left; the modified formula appears on the 
right). 

Note that the convergence condition (2.1) improves the sufficient convergence condition of 
[S] which, for systems i =(A, +&B,,(t)) x, where A,, =const, is the inequality ET II B, ll(lt- 
T IIA,, II)< 2(3-2d(2)). 

Some changes are also necessary in the estimates for the convergence rate of the sequences 
of transformed matrices-the coefficient l/2 in the second and third inequality of (1.19) is to be 
replaced by unity. 

3. On the basis of Theorem 1 and the convergence rate estimates, one can establish sufficient 
conditions for the equilibrium position x =0 of system (1.1) to be asymptotically Lyapunov 
stable (unstable). Indeed, in the convergent case, the last estimate of (1.19) or its analogue in 
Section 2 define a guaranteed neighbourhood of the matrix A, that will contain the matrix A__. 
If Ak is such that all the constant matrices in that neighbourhood have eigenvalues with only 
negative real parts (an eigenvalue exists with a positive real part), then this is true, in 
particular, for A_. Consequently, the equilibrium y = 0 of the reduced system j, = A_y will be 
uniformly asymptotically Lyapunov stable (unstable). Moreover, since the reduced system was 
derived from the first by a linear continuous T-periodic transformation, this conclusion is also 
true for the equilibrium x = 0 of system (1.1). 

4 Example. The Stability of the upper equilibrium position of a pendulum suspended from a vibrating 

point, taking viscous friction into account. The equation of motion of a pendulum whose point of 
suspension is experiencing vertical sinusoidal oscillations of amplitude b and frequency CO, allowing for 
viscous friction, is 

J+V&+(g-bcu*sinau)l-'sin#=O (4.1) 

Here $I is the deviation of the pendulum from the vertical, v is the coefficient of viscous friction, g is the 

acceleration due to gravity and 1 is the length of the pendulum. 
We will establish the conditions under which the upper equilibrium position of the pendulum is 
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uniformly asymptotically stable in the linear approximation; hence, by Lyapunov’s theorem on asymptotic 

stability in the first approximation, it is also uniformly asymptotically stable for the complete system. 

Put 

T=tfi n=oJs/l, Ic=bwl&i, f=v&ii 

and linearize the equation of motion (4.1) in the neighbourhood of the equilibrium position 6 = rr. This 

gives (the prime denotes differentiation with respect to z) 

$“+f$‘-(I-KnsinStt)g=O 

We now replace this second-order equation by a system of two linear equations in the variables o and 

4” and substitute 

This gives a system of type (1.1) 

where A, is a matrix in the space M. 

The condition for the procedure of successive replacements (2.1) to converge in this cast takes the 

form 

max(l,lr2/2-ll+f) +K(l+K12+f)<R/2 (4.2) 

We will now establish the conditions for asymptotic stability of the equilibrium. Let A_ = x0 +a, where 

CI is some constant matrix. Then estimate (2.3) for k = 0 may be written in the form 

/Cl11 < n,S,DC@i ) = E 

where 6, and D(x) are defined by (2.2) and the last expression in (1.19) respectively, and 

v0=max(1.~r2/2-1~+f), po=K(l+K/2+f) (4.3) 

The condition for A_ to have only eigenvalues with negative real parts may be dcr~ved from the 

Routh-Hurwitz criterion 

-f+a,,+n22<0, al,(-f+q2)-(l+a,2)(1-K2!2+9,)>0 

where cl,, are the elements of 0. These inequalities will certainly hold if for- r < 1 

-f+2E<O. -1+(1-E)l?/2--fc:>O, O-z&<1 (4.4) 

Thus, if inequalities (4.2) and (4.4) hold, the equilibrium o=rr of the pendulum is uniformly 

asymptotically Lyapunov stable. 

It is obvious that in the case of constant K. / and iZ-_$ m (E _j 0). i.c. in the zcr.otli app~ oxitnatron wrth 

respect to l/Q these conditions are identical with the more familiar condition hurls > V(2) (see (101). 

In the linear approximation with respect to 1 /R, these conditions may be written in the form 

vo+p(j<R/2. f-2&R>O 

-1+(l-~~/n)K2/2-fCI~IR>O 
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where v,, and pO are defined by (4.3). 

I wish to thank V. V. Rumyantsev for his comments and interest. 
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